
1

Beyond Top-k: A Comparative Study for Dynamic
Routing Mechanisms in Mixture of Experts Models

Tarunyaa Sivakumar, Steven Su, Areeb Alam
University of Pennsylvania School of Engineering and Applied Science

CIS 6200 Advanced Topics in Deep Learning

Abstract—Mixture of Experts (MoE) models offer a scalable
and compute-efficient alternative to dense transformer archi-
tectures by activating only a small, relevant subset of expert
subnetworks per input token. However, the effectiveness of
these models depends critically on the routing strategy used to
determine which experts are activated. In this paper, we present a
comprehensive comparative study of expert routing mechanisms
within MoE-augmented GPT-2 models. Specifically, we evaluate
fixed Top-k routing alongside three dynamic strategies: Top-p,
Top-Any, and Entropy-Adaptive routing.

Our experiments, conducted on the SlimPajama dataset, assess
these routing policies across multiple metrics including cross-
entropy loss, perplexity, inference latency, memory usage, FLOPs,
and expert utilization. Results show that dynamic strategies like
Top-p and Top-Any significantly outperform the dense baseline
and the fixed Top-k routing in terms of both accuracy and expert
load balancing, while offering compute trade-offs.

Through visualizations and correlation analyses, we further
investigate the interaction between input complexity and expert
selection behavior. Our findings highlight the importance of
adaptive routing in achieving efficient, expressive, and well-
utilized MoE models, offering actionable insights for the design
of next-generation sparse neural architectures.

I. INTRODUCTION

A. Mixture of Experts (MoE)

Mixture of Experts (MoE) models are a class of neural
networks that enhance the scalability of deep learning by
activating only a subset of specialized subnetworks—called ex-
perts—during inference. Instead of computing the full forward
pass across all parameters, MoE models dynamically select a
few relevant experts per input token. This selective execution
drastically reduces inference and compute costs. MoE architec-
tures are particularly effective in tasks like language modeling,
where the complexity of inputs can vary widely across tokens.

B. Expert Routing

The core mechanism enabling MoE models is expert rout-
ing, which determines which experts are activated for a given
input token. An effective routing mechanism selects experts
such that model performance remains comparable to dense
execution, but with significantly lower computational over-
head. Thus, routing plays a critical role in balancing model
efficiency, accuracy, and expert specialization.

C. Conventional Routing Mechanisms

A widely used routing approach in early MoE models is
Top-K routing. Here, a gating network computes relevance

scores between each token and expert, then selects the top-
k scoring experts. Only these are activated, and their outputs
are aggregated—typically via a weighted sum informed by the
gating probabilities.

Fig. 1. Top-K routing mechanism: selects a fixed number of top-scoring
experts.

While simple and effective, Top-K suffers from rigidity.
Regardless of the token’s difficulty, it always activates the
same number of experts. This can lead to inefficient use
of compute—overprovisioning for easy inputs and underuti-
lization for hard ones. Additionally, Top-K often leads to
poor load balancing: some experts are overused while others
remain idle, which can harm training convergence and expert
specialization.

D. Dynamic Routing Mechanisms
Dynamic routing addresses the limitations of fixed Top-K

policies by allowing the number of activated experts to vary
per token. These mechanisms adapt expert usage based on
the token’s complexity or confidence scores, improving both
computational efficiency and model flexibility.

Top-P routing selects the minimal set of experts whose
cumulative gating scores exceed a predefined threshold p.
This allows token-specific variability in expert count, adapting
compute effort to the model’s confidence.

Top-Any routing, proposed in this work, introduces per-
expert trainable thresholds combined with sigmoid gating.
Each expert is activated if its sigmoid-transformed score
exceeds its threshold. This allows flexible, fine-grained expert
selection per token, enabling models to achieve high expres-
siveness with adaptive compute.

2

Fig. 2. Top-P routing: activates the smallest set of experts whose cumulative
gating scores exceed a threshold p.

Fig. 3. Top-Any routing: uses per-expert trainable thresholds and sigmoid
gating for token-level activation.

E. Motivation

As reasoning-based models and AI agents become more
prominent, compute demands are projected to grow exponen-
tially. Jensen Huang, CEO of NVIDIA, recently predicted a
100× increase in compute demand, largely fueled by the rise
of these increasingly capable yet compute-intensive systems.
Traditional dense models activate all parameters for every
token, leading to significant inefficiencies—particularly during
inference. Mixture of Experts (MoE) architectures offer a
compelling alternative by selectively activating only a small
subset of specialized subnetworks, or experts, per token. For
instance, DeepSeek-V3 contains 671 billion parameters in
total, but activates only 37 billion per token—less than 6% of
the model—dramatically reducing inference cost. Motivated
by this, our work investigates how routing strategies in MoE
models affect inference-time compute. By intelligently routing
tokens—based on their difficulty or uncertainty—we aim to
further reduce compute costs while maintaining, or even en-
hancing, model performance. This approach has the potential
to make large-scale models significantly more efficient and
practical for deployment.

II. METHODS

In this section, we present the architecture of our baseline
(dense) model and our MoE backbone. We also present
the implementation of chosen routing strategies. Finally, we
present the auxiliary loss and the training specifications.

A. GPT-2 Vanilla [1]

We adopt pretrained GPT-2 as our baseline architecture
due to its structural simplicity and well-documented robust
performance across a variety of language tasks.

GPT-2 is one of the earliest large-scale Transformer-based
language models. Released by OpenAI in 2019, it was trained
on WebText, a curated dataset of approximately 8 million
high-quality web pages. GPT-2 was designed for the objective
of causal language modeling, predicting the next token
given previous context, and demonstrated strong zero-shot
generalization across downstream tasks without task-specific
fine-tuning.

Architecturally, GPT-2 consists of a stack of identical
Transformer decoder blocks, each composed of masked
multi-head self-attention, layer normalization, and feed-
forward layers. Its simplicity and scalability made it a
cornerstone model in the evolution of large language models.

OpenAI released GPT-2 in four sizes, varying in parameter
count and model depth. The specifications are summarized in
Table I.

To construct our dense, baseline model, we build on pre-
trained GPT-2 Large by adding 57 identical decoder blocks
to the architecture. The additional decoder blocks are archi-
tectureally identical to all existing decoder blocks and are
initialized with the same weights and biases as the last decoder
block of the original pretrained GPT-2 Medium model. The fi-
nal dense, baseline model has roughly 1.15 billion parameters.
Note that the additional decoder blocks are required to scale up
the baseline model’s size to roughly equal the size of the MoE
model explained in the next section to enable fair comparisons.
We refer this baseline, dense model as GPT-2 Vanilla in
subsequent sections. After initializing the model, we further
train GPT-2 Vanilla till convergence before experimenting.

B. GPT-2 MoE

In this section, we describe the procedure through which
we constructed GPT-2 MoE, the MoE architecture based on
GPT-2 Medium that we use in this study. To describe the
GPT-2 MoE architecture, we present the implementation of
our 1) Expert Network 2) Router Network 3) MoE Layer and
4) GPT-2 MoE Decoder Block.

1) Expert Network. The Expert Network in our
implementation consists of a linear layer that up-projects
input dimension of 1024 to 4096, the GELU activation
function, and a linear layer that down-projects the dimension
of the output from 4096 back to 1024, sequentially.

Each Expert Network’s weights and biases are initialized
with the exact same weights and biases of the original GPT-2
Vanilla’s Feed Forward Layer scaled down by the number of
experts per MoE Layer, which is 9 in our implementation.

3

Model Parameters Hidden Size Decoder Blocks Attention Heads Expert Layers Experts Per Layer
GPT-2 Small 117M 768 12 12 x x
GPT-2 Medium 345M 1024 24 16 x x
GPT-2 Large 762M 1280 36 20 x x
GPT-2 XL 1.5B 1600 48 25 x x
GPT-2 Vanilla 1.15B 1024 87 16 x x
GPT-2 MoE 1.15B 1024 24 16 12 9

TABLE I
SPECIFICATIONS OF GPT-2 MODEL VARIANTS RELEASED BY OPENAI, AS WELL AS OUR CUSTOM GPT-2 VANILLA AND GPT-2 MOE IMPLEMENTATION

Fig. 4. ARCHITECTURE OF EACH GPT-2 MOE COMPONENT

2) Router Network. In our implementation, the Router
Network is a single linear layer that converts input size 1024
to an output size of 9, which assigns a logit to each Expert
Network in a MoE Layer.

Then, the logits go through SoftMax and are converted
into probabilities assigned to each Expert Network. Finally,
custom routing strategies described in subsequent sections are
responsible for routing tokens to individual Expert Networks
based on their assigned probabilities.

The weights and biases of the Router Network is initialized
via Gaussian noise.

3) MoE Layer. A MoE Layer is designed to replace the
Feed Forward Layers in GPT-2’s decoder blocks. It consists
of an Router Network that route tokens to 9 architecturally
identical Expert Networks.

4) GPT-2 MoE Decoder Block. We replace the Feed
Forward Layer in a GPT-2 Decoder Block with a MoE Layer
to derive a GPT-2 MoE Decoder Block. Then, we convert
a decoder block to a MoE Decoder Block every 2 decoder
blocks in GPT-2 Medium to derive GPT2-MoE used for
experiments in this model. The final parameter count of
GPT-2 MoE is around 1.15 billion.

4

The architecture of each components in GPT-2 MoE is
illustrated in Figure 4.

C. Top-k Routing [2]

Top-k gating activates a fixed number k of experts per token.
Let x ∈ Rd be the token representation, and Wg ∈ Rd×E

be the gating network’s parameters. The gating logits are
computed as:

g(x) = softmax(W⊤
g x)

Then, the top-k experts with highest gating scores are selected:

Top-k(x) = arg
(k)
max
i∈[E]

g(x)i

The MoE output is the weighted combination of selected
expert outputs:

y =
1∑

e∈Top-k(g(x)) g(x)e

∑
e∈Top-k(g(x))

g(x)e · Experte(x)

Despite its success, Top-k requires careful tuning of k
and forces all tokens to activate the same number of experts
regardless of complexity or task specificity.

D. Top-p Routing [3]

Top-p routing is a dynamic expert selection mechanism that
activates a variable number of experts per token based on the
model’s confidence. It addresses a key limitation of Top-k
routing: the assumption that each token should always use
a fixed number of experts, regardless of complexity.

Let g(x) ∈ RE denote the softmax-normalized gating scores
over E experts for a given token x. These scores reflect the
model’s belief in each expert’s suitability to handle the token.

To perform Top-p routing:
• First, the gating scores g(x) are sorted in descending

order.
• Then, we compute the smallest subset S ⊆ [E] of expert

indices such that the cumulative gating mass satisfies:∑
i∈S

g(x)i ≥ p

• This set S defines the dynamically chosen experts for
token x. The number of experts |S| varies per token and
depends on the shape of the gating distribution.

This adaptivity gives Top-p the abilitycan to allocate more
compute to complex tokens and less to simple ones—yielding
both flexibility and potential compute savings.

Formally, let Pi denote the ith highest gating score and
I = (i1, i2, . . . , iE) the sorted expert indices. Then the number
of activated experts t is:

t = min

k ∈ {1, . . . , E} :

k∑
j=1

Pj ≥ p


The final gating mask is:

g∗i (x) =

{
gi(x), if i ∈ S

0, otherwise

where S = {i1, i2, . . . , it}.

E. Top-Any Routing [2]

Top-Any gating addresses two limitations of Top-k: (1)
the need for hyperparameter tuning, and (2) the fixed expert
count across tokens. Inspired by multi-label classification, this
method treats each expert as an independent binary decision.

First, cosine similarity is computed between input token x
and expert embeddings Wg ∈ Rd×E :

s(x) =
⟨x,Wg⟩

∥x∥ · ∥Wg∥

A sigmoid is applied to squash scores into (0, 1):

g̃(x) = σ(s(x))

Experts are activated if their sigmoid score exceeds a learned
per-expert threshold G ∈ RE :

g(x) = sign(g̃(x)− σ(G))

The number of activated experts for token x is:

k =
∑

g(x)

The final output is a uniform average over active experts:

y =
1

k

∑
e:g(x)e>0

Experte(x)

To prevent the issue of token dropping (i.e., no expert
selected), a fallback rule at inference time is introduced:

g̃(x)i =

{
σ(s(x)i), if i = argmaxj σ(s(x)j) and

∑
g(x) = 0

0, otherwise

F. Entropy-Adaptive Routing

We implement an entropy-adaptive routing mechanism that
dynamically adjusts the number of experts activated per token
based on the router’s confidence.
Inspired by entropy-based gating regularization [4], which
penalizes high-entropy gating distributions in the loss function
to encourage more decisive expert selection, our approach
instead uses entropy as a control signal for routing behavior.
Specifically, for each token, we compute the entropy of its
routing distribution and normalize it to the range [0, 1] to
decouple it from the number of experts. This normalized
entropy value is then linearly scaled to a target number
of experts k ∈ [min_k,max_k], with lower entropy (i.e.,
higher confidence) activating fewer experts and higher entropy
activating more. In our setup with 4 total experts, we set
min_k = 1 and max_k = 9, enabling the model to allocate
compute adaptively based on token-level uncertainty. This
routing strategy balances computational efficiency with robust-
ness by concentrating expert use where it is most needed.

G. Auxiliary Loss

To encourage balanced expert utilization and stable routing
behavior, we adopt an auxiliary loss composed of two compo-
nents: a load balancing loss and a router Z-loss. These terms
are applied during training to regularize the expert selection
process and stabilize the router logits.

5

Let the following notation be defined:
• B: batch size
• T : sequence length
• N = B × T : total number of tokens in the batch
• k: number of top experts selected per token
• E: total number of experts
• Ci: number of times expert i is selected in the batch
• fi =

Ci

k·N : usage fraction of expert i

Load Balancing Loss is defined as:

Lbalance = E ·
E∑
i=1

f2
i (1)

This is the scaled squared L2 norm of the expert usage
fractions. The loss is minimized when all experts are used
equally, i.e., fi = 1

E for all i.

Router Z-loss penalizes large magnitudes of the router logits
zbt ∈ RE (pre-softmax scores for expert selection) for token
at batch index b, time step t:

Lz =
1

N

B∑
b=1

T∑
t=1

∥zbt∥22 (2)

This term stabilizes routing decisions by minimizing the
mean squared L2 norm of the logits across all tokens.

Total Auxiliary Loss combines the two components with
weights λ and ϵ:

Laux = λ · (Lbalance + ϵ · Lz) (3)

In our experiments, we use λ = 0.01 and ϵ = 0.001.

H. Training Setup
We train our model using the standard causal language

modeling objective on the SlimPajama-627B dataset, a
deduplicated and cleaned version of the original Pile dataset
curated for language model pretraining. SlimPajama-627B
consists of high-quality English text sourced from a diverse
range of domains including books, web pages, scientific
articles, and open-source code. It is designed to retain the
coverage and diversity of the original Pile while significantly
reducing noise and redundancy through aggressive filtering
and deduplication. The dataset is well-suited for evaluating
the generalization and robustness of large language models in
both academic and real-world settings.

Specifically, we use 10,000 samples from the training split
and 1,000 samples from the evaluation split. The training
loss is the sum of the token-level cross-entropy loss and the
auxiliary loss described in the previous subsection.

We adopt an effective batch size of 32 and optimize using
the Adam optimizer with a learning rate of 5×10−5, scheduled
linearly over the course of training. The models, including
GPT-2 Vanilla and multiple variations of GPT-2 MoE with
distinct routing strategies are trained until convergence using
a single NVIDIA A100 GPU from Google Collab.

I. Training Convergence Test

Tensorboard was used to ensure that a model was trained to
convergence and to accordingly select the number of epochs
and learning rate. Below is an example of the figures that
we used to inform our choices. Evaluation loss (top left of

Fig. 5. Training and evaluation curves for a representative GPT-2 MoE model.

Figure 12) reaches its minimum at approximately 300 training
steps, indicating convergence after a single epoch. Other
subplots show runtime performance, throughput (samples
and steps per second), learning rate schedule, gradient norm
decay, and loss progression. These diagnostics collectively
confirm stable optimization dynamics and effective early
convergence.

III. EXPERIMENTS AND RESULTS

To evaluate the model, we construct the test set from the
SlimPajama-627B dataset as described in the previous
section. We stream 1,000 text examples from the test split
using the Hugging Face datasets library. Each example is
passed through a GPT-2-compatible tokenizer which converts
raw text into token ID sequences. Tokenized sequences
are concatenated and grouped into fixed-length segments
of 1,024 tokens, matching the model’s maximum context
length. This chunking ensures uniform input shapes during
evaluation and avoids padding artifacts. The resulting token
chunks are structured as both input_ids and labels for
autoregressive language modeling, where the model learns to
predict each token given its preceding context. The processed
dataset is then wrapped in a PyTorch DataLoader with a
batch size of 4 to enable efficient batched evaluation.

All evaluations were conducted on an AWS g5.12xlarge
instance. This instance is equipped with four NVIDIA A10G
GPUs, which each features 24 GB of GPU memory. Evalua-
tions were conducted on the finetuned models that were trained
and uploaded to Hugging Face.

A. Model Evaluation

1. Loss [H]

6

TABLE II
AVERAGE CROSS-ENTROPY LOSS PER MODEL.

Model Average Loss
Baseline 9.4053
Top-k 8.3511
Top-p 8.3247
Top-any 8.3137
Entropy Adaptive 8.3216

Fig. 6. Comparison of average cross-entropy loss across different expert
routing strategies. Lower values indicate better predictive performance.

These results are directly computed as the mean token-level
loss across the entire test dataset, with total loss accumulated
as total_loss+ = loss.item() × batch_tokens,
where loss.item() represents the scalar loss value
(cross-entropy) returned by the model per token, and
batch_tokens is the number of tokens in that batch.

All MoE configurations substantially outperform the
baseline dense model, which records a loss of 9.41. The best-
performing model, Top-any, achieves a 11.6% reduction
in loss (8.31), while Top-k, Top-p, and Entropy
Adaptive follow closely with approximately 11.2% to
11.5% improvements over the baseline. The consistent gain
across all MoE variants suggests that sparsely-activated expert
subnetworks improve model expressiveness and generalization
without requiring full parameter activation.

The consistent performance gain across all MoE variants
reflects the increased expressiveness of the model—defined
here as the ability to capture and model more diverse patterns
in the input space. MoE architectures enhance expressiveness
by enabling expert specialization: each expert sub-network
can focus on different linguistic phenomena, styles, or
domains, thereby improving generalization without globally
overfitting. As tokens are routed through tailored subnetworks,
the model captures a richer diversity of behaviors, reducing
the overall loss. This is a finding that has been validated
by prior literature. In fact, in Shazeer et al. [5], their MoE
model achieves significantly lower loss while using fewer
computational resources in comparison to LSTM models.

2. Perplexity [H]
Perplexity, defined as the exponential of the average loss,

quantifies model uncertainty in next-token prediction. A lower

TABLE III
MODEL PERPLEXITY ON THE TEST SET. LOWER PERPLEXITY INDICATES

BETTER LANGUAGE MODELING PERFORMANCE.

Model Perplexity
Baseline 12152.92
Top-k 4234.88
Top-p 4124.32
Top-any 4079.35
Entropy Adaptive 4111.80

Fig. 7. Perplexity of each model on the SlimPajama-627B test set.

perplexity indicates that the model assigns higher confidence
to correct predictions.

The baseline model performs poorly with a perplexity of
12,153, indicating severe uncertainty in next-token prediction.
All MoE configurations reduce perplexity drastically, with
Top-any again achieving the lowest at 4,079—a 66.4%
reduction. Top-p and Entropy Adaptive closely follow.
These results confirm that expert routing enhances the model’s
confidence and sharpness in its output distribution.

3. Average Inference Time per Token [H]
From Table IV, Top-k is the fastest configuration,

requiring only 0.0718 ms per token. This represents a 42.4%
improvement in latency compared to the baseline’s 0.1246 ms.
By activating a fixed number of experts, Top-k minimizes
routing overhead.

In contrast, Top-p, Top-any, and Entropy Adaptive
involve dynamic expert selection, which might incur additional
overheads. These overheads can be computational in nature
such as the calculations involving top-p sampling and entropy
although we aren’t quite sure.

TABLE IV
AVERAGE INFERENCE TIME PER TOKEN (IN MILLISECONDS). LOWER

VALUES INDICATE FASTER EVALUATION.

Model Time per Token (ms)
Baseline 0.1246
Top-k 0.0718
Top-p 0.1054
Top-any 0.1083
Entropy Adaptive 0.1263

7

Fig. 8. Inference latency per token (in milliseconds) for each model
configuration.

4. Average Memory Used per Batch [H]

TABLE V
AVERAGE GPU MEMORY USED PER EVALUATION BATCH (IN MB). LOWER

IS MORE MEMORY EFFICIENT.

Model Memory (MB)
Baseline 2215.70
Top-k 4867.34
Top-p 5385.34
Top-any 5321.90
Entropy Adaptive 5318.37

Fig. 9. Average GPU memory consumption per batch during evaluation.

Memory usage is computed as the mean of memory
snapshots taken immediately before and after each forward
pass.

Table V indicates that the baseline model is most memory-
efficient at 2215.7 MB. MoE models generally consume
2.4x more memory on average due to expert parallelism.
Top-k remains relatively efficient (4867.3 MB), while
Top-p, Top-any, and Entropy Adaptive exceed
5300 MB. The elevated memory usage might be attributable
to simultaneous expert execution and intermediate buffer
overheads during routing. However, we aren’t completely sure
of why this is the case and this is a future research direction.

TABLE VI
TOTAL FLOATING-POINT OPERATIONS DURING EVALUATION (IN

GFLOPS). LOWER IS MORE COMPUTE-EFFICIENT.

Model Total FLOPs (GFLOPs)
Baseline 2,234,605.05
Top-k 787,077.66
Top-p 1,226,984.75
Top-any 1,108,924.11
Entropy Adaptive 983,194.32

Fig. 10. Total number of floating-point operations performed during evalua-
tion, measured in GFLOPs.

5. Total FLOPs

We use the PyTorch Profiler with with_flops=True to
calculate FLOPs (Floating Point Operations) per batch. These
are accumulated over the test set and normalized by token
count to yield.

According to Table VI, MoE variants significantly reduce
the total floating-point operations required during inference.
Top-k is the most efficient at 787 GFLOPs, representing a
64.8% reduction compared to the baseline (2,234 GFLOPs).
The reduction stems from sparsity: only a subset of the
parameters is active per token. Top-any and Top-p
consume moderately more compute due to more selection of
experts, which increases the number of parameters evaluated
per token.

6. Average Experts Activated per Token [H]

TABLE VII
AVERAGE NUMBER OF EXPERTS ACTIVATED PER TOKEN. ENTROPY

ADAPTIVE WAS NOT INSTRUMENTED FOR USAGE.

Model Avg Experts/Token
Baseline 0.00
Top-k 2.00
Top-p 6.49
Top-any 5.28
Entropy Adaptive —

8

Fig. 11. Average number of experts activated per token across layers. Entropy
Adaptive results were omitted due to computational errors during Evaluation.

Finally, Table VII outlines the average number of experts
activated per token. Top-k maintains a fixed value of 2
experts, which enables predictable inference-time resource
allocation. Top-p uses the most experts per token (6.49),
yielding higher model expressiveness and accuracy, but at
the cost of greater memory and compute. Top-any strikes a
balance with 5.28 experts/token.

7. Layer-level Expert Usage metrics [H]
We collected data on layer-wise average of expert

activations, giving per-layer sparsity statistics. We
implemented this to understand how the model utilizes
its experts. For each input, the number of tokens routed
to each expert in each layer is recorded via the model’s
internal usage counter buffers. After each forward pass, these
counters are reset. We compute the average number of experts
activated per token, normalized by the number of experts
(e.g., 9 in this case), as well as the standard deviation of this
count across all batches.

Below we have graphs that depict expert usage across
transformer layers and expert IDs. Each point denotes the
activation of a specific expert within a particular layer, and
the size of the circle is proportional to the number of tokens
routed to that expert during inference. Larger circles indicate
heavier usage, reflecting the model’s preference for certain
experts.

Fig. 12. Expert Usage by Layer and Expert ID under top-k routing policy.

Fig. 13. Expert Usage by Layer and Expert ID under top-p routing policy.

Fig. 14. Expert Usage by Layer and Expert ID under top-any routing policy.

In Figure 12, the Top-k policy exhibits a highly
concentrated usage pattern. A few experts per layer dominate
token routing, resulting in large circle markers for only a
subset of experts. This indicates a lack of diversity in expert
usage.

In contrast, Figure 13 shows that Top-p routing achieves
a near-uniform distribution of token routing across all experts
and layers. Every expert receives consistent number of
tokens, suggesting successful load balancing. This is the most
balanced configuration in terms of expert usage.

Figure 14 presents the Top-any configuration, which
displays a broader activation pattern than Top-k but
less uniformity than Top-p. A wide range of experts is
used, though with some variation in frequency. This might
indicate a practical compromise between expressiveness and
computational efficiency.

The size of each circle in these plots reflects the number
of tokens routed to that expert in the corresponding layer,
providing an intuitive visualization of load distribution. These
results reinforce the trade-off between rigidity of routing
policu and load balancing. Fixed strategies like Top-k have
limited expert diversity, while adaptive strategies like Top-p
and Top-any more fully engages the model’s experts.

8. Correlation of Expert Usage with Input Complexity
The input prompt complexity for each test example was

calculated as the mean entropy across the model’s output

9

probabilities.

Below we have scatter plots showing the relationship be-
tween input difficulty and the number of experts activated
per token. Each point corresponds to a single evaluation
example. The low correlation suggests that the model’s routing
behavior is relatively invariant to input complexity while a
high correlation suggests that the model’s routing behaviour
is sensitive to the input complexity.

Fig. 15. Input prompt complexity against expert activated per token under
top-k routing policy.

Fig. 16. Input prompt complexity against expert activated per token under
top-p routing policy.

TABLE VIII
PEARSON CORRELATION BETWEEN INPUT DIFFICULTY AND EXPERT
ACTIVATION ACROSS ROUTING POLICIES AND NUMBER OF EXPERTS.

Routing Policy Number of Experts Correlation
Top-k 9 NaN
Top-p 9 -0.1474
Top-any 9 -0.0398
Top-k 4 NaN
Top-p 4 0.4863

We analyze the correlation between input prompt entropy
and the number of experts activated per token across different
routing policies and configurations. Entropy serves as a

Fig. 17. Input prompt complexity against expert activated per token under
top-any routing policy.

proxy for input difficulty—the higher the entropy, the more
uncertain the model is in generating a next-token prediction.

Under the Top-k policy, the number of experts per token
is fixed. This results in a flat distribution across all samples,
as clearly seen in Figures 15 and 18, where the expert count
remains constant regardless of entropy. Consequently, the
correlation is undefined (NaN), as there is no variance in the
dependent variable. This reflects the rigidity of fixed routing,
which cannot adapt based on input complexity.

10

The Top-p policy, by contrast, dynamically selects experts
based on a probabilistic threshold. With 8 total experts (Fig-
ure 16), the observed correlation is weakly negative (–0.1474),
suggesting a slight tendency to activate fewer experts on more
complex inputs. This counterintuitive behavior could arise
because a high input prompt entropy leads to the softmax
distribution becoming more uniform. Under the Top-p routing
strategy, experts are selected until the cumulative probability
surpasses a predefined threshold p. When the softmax distri-
bution is flatter because of the higher entropy, the cumulative
probability accumulates more slowly, potentially leading to
the selection of fewer experts to meet the threshold. This
phenomenon has been discussed in recent studies [3].

Interestingly, when the number of experts is reduced to 4
(Figure 19), the correlation under Top-p becomes strongly
positive (0.4863). This implies that with fewer routing
choices, the model is able to dynamically activate more
experts for a more complex input which is what we’d expect.
This can be because fewer experts lead to an increase in the
likelihood of overlapping routing probabilities which leads to
broader activation to meet the top-p mass cutoff. This is an
area of further research.

Top-any routing exhibits a near-zero correlation (–0.0398),
indicating that expert count per token remains relatively
similar regardless of input difficulty. We aren’t sure why this
is the case as we’d expect there to be fewer experts activated
when the input prompt is simple and the router is given the
choice to choose any number of experts.

9. Distribution of Tokens Routing
The distribution of tokens routed to each expert ID within

each MoE layer was examined to provide insights into load
balancing. Expert usage is aggregated and normalized to
produce a per-layer expert usage heatmap, which shows how
balanced the routing is across the model. A Heatmap of expert
token counts per layer, useful for identifying overloaded or
underutilized expert, is used as a visualization tool.

These metrics allow us to deeply inspect model routing
behavior. Figures 20–22 provide heatmaps of token routing
frequency under different gating mechanisms, where color
intensity denotes the number of tokens routed to a specific
expert at each layer.

The Top-k Routing (Fig. 20) results in a highly uneven
distribution of token traffic. Only a small subset of experts
per layer is selected, with the rest remaining virtually
unused. This is a direct consequence of rigid number of
expert selection, which, while efficient (as can be seen from
lowest FLOPs consumed), leads to poor expert usage. The
consistently bright regions in the heatmap indicate repeated
selection of the same experts across batches.

In contrast, Top-p Routing (Fig. 21) activates experts based
on a cumulative probability threshold, allowing for a more
stochastic and input-dependent routing. The heatmap reflects
this: nearly all experts across most layers are utilized, leading

Fig. 20. Token routing counts for Top-k routing policy. Each cell represents
the total number of tokens routed to a specific expert (x-axis) in a given layer
(y-axis).

Fig. 21. Token routing counts for Top-p routing policy. Each cell represents
the total number of tokens routed to a specific expert (x-axis) in a given layer
(y-axis).

to a more even and diverse expert engagement pattern. This
results in improved load balancing and gives the potential for
the routing gate to adapt to different input distributions.

Top-any Routing (Fig. 22) serves as an intermediate
strategy. The heatmap reveals moderate diversity: most
experts receive some traffic, but a few are disproportionately
favored.

These visualizations emphasize the profound effect routing
policies have on expert utilization. While Top-k ensures
low compute cost, it sacrifices diversity and load balancing.
Top-p maximizes routing flexibility and model utilization, at
the cost of increased computation. Top-any strikes a middle
ground. Selecting a routing policy should therefore reflect
the deployment context: compute-bound environments may

11

Fig. 22. Token routing counts for Top-any routing policy. Each cell represents
the total number of tokens routed to a specific expert (x-axis) in a given layer
(y-axis).

prefer Top-k, whereas Top-p is better suited for applications
requiring maximum expressiveness and adaptivity.

IV. DISCUSSION

A. Summary of Findings

This work presented a comparative evaluation of sparsely
activated transformer models using various Mixture-of-
Experts (MoE) routing strategies, including Top-k, Top-p,
Top-any, and an entropy-adaptive gating mechanism. Our
results demonstrate that all MoE-based models significantly
outperform the dense baseline in terms of both cross-entropy
loss and perplexity, achieving up to a 66% reduction in
uncertainty during next-token prediction. The Top-any and
Top-p strategies showed the strongest performance gains,
albeit at the cost of higher memory and compute usage.

From an efficiency standpoint, Top-k consistently achieved
the lowest latency and compute overhead, highlighting its
suitability for resource-constrained deployment. The results
also suggest that routing flexibility correlates with better
performance, but incurs trade-offs in hardware demand and
expert load balancing. However, further research is needed to
confirm this result because some of the behaviours, especially
with input prompt complexity correlation, were unexpected.

B. Interpretations and Insights

Qualitative analysis of expert routing behavior revealed
several important patterns. Fixed routing strategies like Top-k
led to expert monopolization, underutilizing model capacity
and showing no adaptability to input complexity. In contrast,
Top-p and Top-any routing demonstrated higher expert
usage.

Correlational analysis between input entropy and expert
activation showed a strong positive relationship only with
Top-p with 4 experts, suggesting that adaptive routing poli-
cies are able to dynamically adjust computational effort based

on input complexity. With further research, MoE models can
not only scale model capacity efficiently but also provide a
mechanism to condition computation on the difficulty of the
input.

C. Lessons Learned

Profiling FLOPs, memory, and latency per token proved cru-
cial to understanding the true operational cost of each routing
strategy. Visualizing routing distributions and correlating them
with token entropy was especially valuable for diagnosing
model behavior and assessing dynamic routing quality.

We faced a number of engineering and resource challenges.
Our MoE architecture required approximately 30GB of GPU
memory for finetuning, but the AWS g5.xlarge instances
we initially used only provided 20GB. This discrepancy led to
frequent out-of-memory (OOM) errors, forcing us to manually
clear GPU cache and restart training processes repeatedly.
These interruptions significantly slowed down experimentation
and model convergence.

Additionally, hyperparameter tuning proved especially dif-
ficult, as modifying MoE parameters—such as the number of
experts or routing thresholds—typically required retraining the
entire model from scratch. This constraint limited our ability
to perform wide sweeps or iterative refinement.

Exposing and tuning internal MoE components also re-
quired custom logic. For instance, implementing per-expert
thresholds in Top-any routing or adjusting entropy thresh-
olds for adaptive gating involved manual changes to the
model internals. Making these components configurable in a
generalizable way took significant effort, especially given the
lack of off-the-shelf support in standard libraries.

Together, these challenges highlighted the practical barriers
to deploying MoE models in low-resource environments and
emphasized the need for better tooling around dynamic sparse
architectures.

D. Future Work

Several promising directions remain open for future re-
search. First, integrating reinforcement learning (RL) as a
gating mechanism offers a principled way to treat expert
selection as a learned policy. Since expert routing inherently
defines a policy over a discrete action space (i.e., selecting one
or more experts), RL methods such as REINFORCE can be
employed to learn this policy based on a reward function. The
reward can jointly optimize for predictive accuracy and expert
load balancing—two often competing objectives. To reduce
the high variance typically associated with REINFORCE,
variance-reduction techniques (e.g., using a baseline) could
be incorporated. A particularly effective strategy could involve
first training a supervised reference model purely for accuracy.
This model could then serve as a fixed reference policy,
enabling KL-regularized RL to steer exploration toward better
load-balanced solutions while preserving accuracy. Such a
gating mechanism could be trained offline to avoid inference-
time overhead, and then distilled into a lightweight router
for deployment. This would offer dynamic, context-sensitive

12

Model Loss Perplexity Time/Token (ms) Memory (MB) FLOPs (G) Experts/Token
Baseline (Dense) 9.41 12,153 0.1246 2215.7 2234.6 N/A
Top-k (E=8) 8.35 4234.9 0.0718 4867.3 787.1 2.00
Top-p (E=8) 8.32 4124.3 0.1054 5385.3 1227.0 6.49
Top-any (E=8) 8.31 4079.4 0.1083 5321.9 1108.9 5.28
Entropy-Adaptive 8.32 4111.8 0.1263 5318.4 983.2 N/A
Top-k (E=4) – – – – – 2.00
Top-p (E=4) – – – – – 4.86

TABLE IX
PERFORMANCE SUMMARY ACROSS ROUTING CONFIGURATIONS. ALL MOE MODELS OUTPERFORM THE DENSE BASELINE IN PERPLEXITY AND LOSS,

WITH VARYING TRADE-OFFS IN COMPUTE AND MEMORY.

expert selection with minimal runtime cost—advancing the
flexibility and efficiency of MoE systems.

Second, extending these evaluations to multilingual, vision-
language, or long-context benchmarks could better validate
our results. Finally, hardware-aware routing strategies that
adapt based on memory availability or parallelism constraints
represent a practical and impactful next step.

V. RELATED WORKS

Mixture of Experts Meet Instruction Tuning [6]

This paper implements MoE at scale by proposing sparsely
gated MoE layers, where only a few expert sub-networks are
activated per forward pass using a learned gating mechanism.
It forms the foundation for our project, particularly the use of
sparse expert selection strategies. We build on this concept by
investigating alternative routing strategies—Top-K, Top-P, and
Top-Any—to optimize expert selection at inference time.

Switch Transformers [9]

This work scales Transformers to trillion-parameter levels
by replacing dense FFNs with sparsely gated “Switch” MoE
layers, activating only one expert per token. This significantly
reduces training FLOPs and memory usage while maintaining
performance. We adopt their single-expert-per-token setup as a
baseline and expand the routing mechanism by testing Top-K
and Top-P to improve load balancing and efficiency.

DeepSeek MoE [8]

DeepSeek MoE introduces finer sub-experts and a shared
expert pool, enabling the router to select more specialized
combinations per token. Achieving LLaMA-2 performance
with 40% compute, this work inspires our Top-P and Top-Any
routing strategies aimed at improved load balancing through
more flexible expert activation.

LLaMA-MoE [10]

This paper demonstrates how to retrofit a dense LLaMA-2
7B model into a sparse MoE using lightweight expert parti-
tioning and Top-K gating, followed by continual pre-training.
Their efficient adaptation method motivates our exploration
of alternative routing mechanisms like Top-Any to further
optimize sparse conversions.

Harder Tasks Need More Experts [3]

This paper shows that confidence-based gates outperform
fixed Top-2 routing in both accuracy and efficiency, supporting
the idea that different tokens need different expert capacities.
Our Top-Any and entropy-threshold-based routers build on this
principle, aiming for dynamic capacity allocation to enhance
inference-time performance.

Dynamic Mixture of Experts (DynMoE) [2]

DynMoE combines Top-Any routing with a training-time
scheduler that can grow or prune experts, enabling tokens to
activate only the capacity they need. It achieves Switch-level
performance while activating fewer than 6% of parameters.
We extend their Top-Any method with entropy thresholds and
fine-tuning to explore smoother load balancing and reduced
compute.

Mixture of Experts with Expert Choice Routing [11]

Instead of tokens choosing their top-k experts, this paper
proposes allowing experts to select their top-k tokens. This
“Expert Choice” gating reduces load imbalance and accel-
erates convergence. While our work focuses on token-based
routing, this paper offers a complementary perspective that
may inform future hybrid routing schemes.

MoEfication [7]

MoEfication repurposes pretrained dense Transformers by
splitting FFN layers into functional partitions and adding
lightweight routers, transforming them into sparse models
without additional parameters. This retrofit approach aligns
with our goals and motivates our exploration of routing
strategies like Top-P to maximize the performance of MoEfied
architectures.

VI. CONCLUSION

In this paper, we explored the design, implementation, and
comparative evaluation of multiple expert routing strategies
in Mixture of Experts (MoE) models—namely, Top-k, Top-p,
Top-any, and Entropy-Adaptive routing—within a GPT-2
architecture. Our primary goal was to assess how different
gating mechanisms influence model performance, compute
efficiency, and expert utilization.

13

Our results demonstrate that all MoE configurations
substantially outperform the dense baseline in terms of both
average loss and perplexity. Notably, Top-any and Top-p
routing strategies yielded the best overall language modeling
performance, achieving the lowest loss and perplexity scores.
However, these gains came at the cost of increased memory
usage and inference-time compute, highlighting the intrinsic
trade-off between model expressiveness and computational
efficiency.

Through a comprehensive set of analyses—including
expert usage heatmaps, input-entropy correlations, and
per-layer routing visualizations—we observed that dynamic
routing mechanisms like Top-p and Top-any enable more
balanced and adaptive expert utilization. These strategies
allow the model to scale its computational effort based on the
complexity of the input, an ability that fixed Top-k routing
lacks.

Our study reaffirms that routing flexibility plays a crucial
role in unlocking the full potential of sparse expert architec-
tures. Our findings serve as a design guide for researchers and
practitioners seeking to deploy efficient yet powerful sparse
language models.

REFERENCES

[1] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language Models are Unsupervised Multitask Learners,” OpenAI Blog,
2019.

[2] W. Jiang, Y. Zhang, Y. Yuan, W. Wang, Z. Huang, W. Zhao, S. Zhang,
and X. Song, “Dynamic Mixture of Experts: An Auto-Tuning Approach
for Efficient Transformer Models,” arXiv preprint, arXiv:2405.14297,
May 2024.

[3] Q. Huang, C. Qin, Y. J. Kim, and D. Alistarh, “Harder Tasks Need
More Experts: Dynamic Routing in MoE Models,” arXiv preprint,
arXiv:2403.07652, March 2024.

[4] W. Zhang, Z. Zhang, H. Wang, Y. Wu, and C. Xu, “SEER-MoE: Sparse
Expert Efficiency through Regularization for Mixture-of-Experts,” arXiv
preprint, arXiv:2404.05089, Apr. 2024.

[5] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint, arXiv:1701.06538, January
2017.

[6] Q. Zheng, H. Wang, Z. Zhang, Y. Song, Z. Liu, and H. Ma, “Mixture
of Experts Meet Instruction Tuning,” arXiv preprint, arXiv:2305.14705,
May 2023.

[7] Y. Zhang, S. Sun, X. Qiu, L. Hou, Y. Liu, J. Liu, J. Liu, M. Zhou,
and W. Chen, “MoEfication: Scalable and Efficient MoE Training for
Pre-trained Transformers,” arXiv preprint, arXiv:2110.01786, October
2021.

[8] DeepSeek AI, “DeepSeekMoE: Scaling Language Models with Mixture-
of-Experts in All Layers,” arXiv preprint, arXiv:2401.06066, January
2024.

[9] W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity,” arXiv
preprint, arXiv:2101.03961, January 2021.

[10] W. Zhao, W. Tang, Y. Deng, S. Xiao, S. Wang, X. Liang, X. Lin,
S. Gu, and X. Song, “LLaMA-MoE: Efficiently Retrofitting Sparse
Mixture of Experts into Pretrained LLaMA Models,” arXiv preprint,
arXiv:2406.16554, June 2024.

[11] M. Lewis, D. Yarats, S. Shleifer, Y. Lu, S. Narang, J. Xu, A. Baevski, J.
Ainslie, G. Wenzek, X. Chen, and others, “Mixture of Experts with
Expert Choice Routing,” arXiv preprint, arXiv:2202.09368, February
2022.

